|
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D7263 2009ASTM D7263 - 09Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil SpecimensActive Standard ASTM D7263 | Developed by Subcommittee: D18.03 Book of Standards Volume: 04.09 ASTM D7263Significance and Use Dry density, as defined as density of soil or rock in Terminology D 653 and bulk density by soil scientists, can be used to convert the water fraction of soil from a mass basis to a volume basis and vise-versa. When particle density, that is, specific gravity (Test Methods D 854 ) is also known, dry density can be used to calculate porosity and void ratio (see Appendix X1). Dry density measurements are also useful for determining degree of soil compaction. Since moisture content is variable, moist soil density provides little useful information except to estimate the weight of soil per unit volume, for example, pounds per cubic yard, at the time of sampling. Since soil volume shrinks with drying of swelling soils, bulk density will vary with moisture content. Hence, the water content of the soil should be determined at the time of sampling. Densities (unit weights) of remolded/reconstituted specimens are commonly used to evaluate the degree of compaction of earthen fills, embankments, etc. Dry density values are usually used in conjunction with compaction curve values (Test Methods D 698 and D 1557 ). Density (unit weight) is one of the key components in determining the mass composition/phase relations of soil, see Appendix X1. Note 1The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D 3740 does not in itself assure reliable results. Reliable results depend on several factors; Practice D 3740 provides a means of evaluating some of these factors. 1. Scope 1.1 These test methods describe two ways of determining the total/moist and dry densities (unit weights) of intact, disturbed, remolded, and reconstituted (compacted) soil specimens. Density (unit weight) as used in this standard means the same as bulk density of soil as defined by the Soil Science Society of America. Intact specimens may be obtained from thin-walled sampling tubes, block samples, or clods. Specimens that are remolded by dynamic or static compaction procedures may also be measured by these methods. These methods apply to soils that will retain their shape during the measurement process and may also apply to other materials such as soil-cement, soil-lime, soil-bentonite or solidified soil-bentonite-cement slurries. It is common for the density (unit weight) of specimens after removal from sampling tubes and compaction molds to be less than the value based on tube or mold volumes, or of in-situ conditions. This is due to the specimen swelling after removal of lateral pressures. 1.1.1 Method A covers the procedure for measuring the volume of wax coated specimens by determining the quantity of water displaced. 1.1.1.1 This method only applies to specimens in which the wax will not penetrate the outer surface of the specimen. 1.1.2 Method B covers the procedure by means of the direct measurement of the dimensions and mass of a specimen, usually one of cylindrical shape. Intact and reconstituted/remolded specimens may be tested by this method in conjunction with strength, permeability (air/water) and compressibility determinations. 1.2 The values stated in SI units are to be regarded as the standard. The values stated in inch-pound units are approximate. 1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026 . 1.3.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy with which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D653 Terminology Relating to Soil, Rock, and Contained Fluids D698 Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)) D854 Test Methods for Specific Gravity of Soil Solids by Water Pycnometer D1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)) D1587 Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes D2166 Test Method for Unconfined Compressive Strength of Cohesive Soil D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) D2488 Practice for Description and Identification of Soils (Visual-Manual Procedure) D3550 Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction D4220 Practices for Preserving and Transporting Soil Samples D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing D6026 Practice for Using Significant Digits in Geotechnical Data E2251 Specification for Liquid-in-Glass ASTM Thermometers with Low-Hazard Precision Liquids Other Reference SoilScienceSocietyof Glossary of Soil Science Terms Available online: www.soils.org/sssagloss/index.php.Keywords density; porosity; saturation; specimen; unit weight; void ratio; ICS Code ICS Number Code 13.080.20 (Physical properties of soil) DOI: 10.1520/D7263-09 ASTM International is a member of CrossRef. ASTM D7263The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|