Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(353)
(651)
(599)
(58)
(290)
(1042)
(728)
(2262)
(117)
(97896)
(58)
(635)
(132)
(33)
(28)
(20)
(99791)
(18)
(1)
(396)
(328)
(10763)
(7369)
(252)
(21)
(24378)
(849)
(7)
(1722)
(23)
(19)
(28)
(4)
 
(6)
(7)
(128)
(1)
(3)
(58)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(36)
(13)
(71)
(24)
(25)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(34)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    G134-95(2001)e1 Standard Test Method for Erosion of Solid Materials by a Cavitating Liquid Jet
    Edition: 2001
    $144.00
    Unlimited Users per year

Description of ASTM-G134 2001

ASTM G134-95(2001)e1

Historical Standard: ASTM G134-95(2001)e1 Standard Test Method for Erosion of Solid Materials by a Cavitating Liquid Jet

SUPERSEDED (see Active link, below)




ASTM G134

1. Scope

1.1 This test method covers a test that can be used to compare the cavitation erosion resistance of solid materials. A submerged cavitating jet, issuing from a nozzle, impinges on a test specimen placed in its path so that cavities collapse on it, thereby causing erosion. The test is carried out under specified conditions in a specified liquid, usually water. This test method can also be used to compare the cavitation erosion capability of various liquids.

1.2 This test method specifies the nozzle and nozzle holder shape and size, the specimen size and its method of mounting, and the minimum test chamber size. Procedures are described for selecting the standoff distance and one of several standard test conditions. Deviation from some of these conditions is permitted where appropriate and if properly documented. Guidance is given on setting up a suitable apparatus, test and reporting procedures, and the precautions to be taken. Standard reference materials are specified; these must be used to verify the operation of the facility and to define the normalized erosion resistance of other materials.

1.3 Two types of tests are encompassed, one using test liquids which can be run to waste, for example, tap water, and the other using liquids which must be recirculated, for example, reagent water or various oils. Slightly different test circuits are required for each type.

1.4 This test method provides an alternative to Test Method G32. In that method, cavitation is induced by vibrating a submerged specimen at high frequency (20 kHz) with a specified amplitude. In the present method, cavitation is generated in a flowing system so that both the jet velocity and the downstream pressure (which causes the bubble collapse) can be varied independently.

1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

A276 Specification for Stainless Steel Bars and Shapes

B160 Specification for Nickel Rod and Bar

B211 Specification for Aluminum and Aluminum-Alloy Rolled or Cold Finished Bar, Rod, and Wire

D1193 Specification for Reagent Water

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

G32 Test Method for Cavitation Erosion Using Vibratory Apparatus

G40 Terminology Relating to Wear and Erosion

G73 Test Method for Liquid Impingement Erosion Using Rotating Apparatus


Keywords

cavitating jet; cavitation; cavitation erosion; erosion by liquids; erosion of solids; erosion test; flow cavitation;


ICS Code

ICS Number Code 19.060 (Mechanical testing)


DOI: 10.1520/G0134-95R01E01

ASTM International is a member of CrossRef.




This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,072.53 Buy
VAR
ASTM
[+] $5,463.72 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X