Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(353)
(651)
(599)
(58)
(290)
(1042)
(728)
(2262)
(117)
(97896)
(58)
(635)
(132)
(33)
(28)
(20)
(99791)
(18)
(1)
(396)
(328)
(10763)
(7368)
(252)
(21)
(24378)
(910)
(7)
(1722)
(23)
(19)
(28)
(4)
 
(6)
(7)
(128)
(1)
(3)
(58)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(36)
(13)
(71)
(24)
(25)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(34)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ISO
    ISO 9613-2:2024 Acoustics - Attenuation of sound during propagation outdoors - Part 2: Engineering method for the prediction of sound pressure levels outdoors
    Edition: 2024
    $517.03
    / user per year

Content Description

This document specifies an engineering method for calculating the attenuation of sound during propagation outdoors in order to predict the levels of environmental noise at a distance from a variety of sources. The method predicts the equivalent continuous A-weighted sound pressure level (as described in ISO 1996-series) under meteorological conditions favourable to propagation from sources of known sound emission.

These conditions are for downwind propagation or, equivalently, propagation under a well-developed moderate ground based temperature inversion, such as commonly occurs in clear, calm nights. Inversion conditions over extended water surfaces are not covered and may result in higher sound pressure levels than predicted from this document (see e.g. References [11] and [12]).

The method also predicts a long-term average A weighted sound pressure level as specified in ISO 1996-1 and ISO 1996-2. The long-term average A weighted sound pressure level encompasses levels for a wide variety of meteorological conditions.

Guidance has been provided to derive a meteorological correction based on the angular wind distribution relevant for the reference or long-term time interval as specified in ISO 1996-1:2016, 3.2.1 and 3.2.2. Examples for reference time intervals are day, night, or the hour of the night with the largest value of the sound pressure level. Long-term time intervals over which the sound of a series of reference time intervals is averaged or assessed representing a significant fraction of a year (e.g. 3 months, 6 months or 1 year).

The method specified in this document consists specifically of octave band algorithms (with nominal mid-band frequencies from 63 Hz to 8 kHz) for calculating the attenuation of sound which originates from a point sound source, or an assembly of point sources. The source (or sources) may be moving or stationary. Specific terms are provided in the algorithms for the following physical effects:

—     geometrical divergence;

—     atmospheric absorption;

—     ground effect;

—     reflection from surfaces;

—     screening by obstacles.

Additional information concerning propagation through foliage, industrial sites and housing is given in Annex A. The directivity of chimney-stacks to support the sound predictions for industrial sites has been included with Annex B. An example how the far-distance meteorological correction C0 can be determined from the local wind-climatology is given in Annex C. Experiences of the last decades how to predict the sound pressure levels caused by wind turbines is summarized in Annex D.

The method is applicable in practice to a great variety of noise sources and environments. It is applicable, directly, or indirectly, to most situations concerning road or rail traffic, industrial noise sources, construction activities, and many other ground-based noise sources. It does not apply to sound from aircraft in flight, or to blast waves from mining, military, or similar operations.

To apply the method of this document, several parameters need to be known with respect to the geometry of the source and of the environment, the ground surface characteristics, and the source strength in terms of octave band sound power levels for directions relevant to the propagation.

If only A weighted sound power levels of the sources are known, the attenuation terms for 500 Hz may be used to estimate the resulting attenuation.

The accuracy of the method and the limitations to its use in practice are described in Clause 9.



About ISO

ISO, the International Organization for Standardization, brings global experts together to agree on the best way of doing things – for anything from making a product to managing a process. As one of the oldest non-governmental international organizations, ISO has enabled trade and cooperation between people and companies all over the world since 1946. The International Standards published by ISO serve to make lives easier, safer and better.

X